思學佳教育

如何突破數學真假命題難點?

發布者:思學佳教育 時間:2017-10-26 16:53:03

一、 定位整體

新課程標準對“常用邏輯用語”的定位為:“正確使用邏輯用語是現代社會公民應該具備的基本素質,無論是進行思考、交流,還是從事各項工作,都需要正確的運用邏輯用語表達自己的思想.在本模塊中,同學們將在義務教育的基礎上,學習常用邏輯用語,體會邏輯用語在表述和論證中的作用,利用這些邏輯用語準確地表達數學內容,更好地進行交流.” 因此,深圳課外輔導機構分享學習邏輯用語,不僅要了解數理邏輯的有關知識,還要體會邏輯用語在表述或論證中的作用,使以后的論證和表述更加準確、清晰和簡潔.

深圳課外輔導機構


二、 明確重點

“常用邏輯用語”分成三大節,分別為:命題及其關系,簡單的邏輯聯結詞,全稱量詞與存在量詞.

“命題及其關系”分兩小節:一、“四種命題”,此節重點在于四種命題形式及其關系,互為逆否命題的等價性;二、“充分條件和必要條件”,此節重點在于充分條件、必要條件、充要條件的準確理解以及正確判斷.

“簡單的邏輯聯結詞”重點在于“且”、 “或”、 “非”這三個邏輯聯結詞的理解和應用.

“全稱量詞與存在量詞”重點在于理解全稱量詞與存在量詞的意義,以及正確做出含有一個量詞的命題的否定.


三、 突破難點

1. “四種命題”的難點在于分清命題的條件和結論以及判斷命題的真假

例1 分別寫出下列命題的逆命題、否命題、逆否命題,并判斷它們的真假.

(1) 全等三角形的面積相等;

(2) m>時,方程mx2-x+1=0無實根;

(3) 若sinα≠,則α≠30°.

解析 (1) 條件為兩個三角形全等,結論為它們的面積相等.因此,原命題即為“若兩個三角形全等,則它們的面積相等”,逆命題為“若兩個三角形面積相等,則它們全等”,否命題為“若兩個三角形不全等,則它們的面積不相等”,逆否命題為“若兩個三角形面積不相等,則它們不全等”.根據平面幾何知識,易得原命題和逆否命題為真命題,逆命題和否命題為假命題.

(2) 原命題即為“若m>,則方程mx2-x+1=0無實根”,逆命題為“若方程mx2-x+1=0無實根,則m>”,否命題為“若m≤,則方程mx2-x+1=0有實根”,逆否命題為“若方程mx2-x+1=0有實根,則m≤”.根據判別式Δ=1-4m的正負可知,原命題、逆命題、否命題、逆否命題均為真命題.

(3) 原命題即為“若sinα≠,則α≠30°”,逆命題為“若α≠30°,則sinα≠”,否命題為“若sinα=,則α=30°”,逆否命題為“若α=30°,則sinα=”.直接判斷原命題與逆命題真假有些困難,但考慮到原命題與逆否命題等價,逆命題與否命題等價,因此可以先考慮逆否命題和否命題;由三角函數的知識,可知原命題和逆否命題為真命題,逆命題和否命題為假命題.

突破 深圳課外輔導機構分享 對于判斷命題的真假,我們需要先弄清何為條件、何為結論,然后根據相應的知識進行判斷,當原命題不容易直接判斷時,可以先判斷其逆否命題的真假性,從而得到原命題的真假性.


2. “充分條件和必要條件”的難點在于充要性的判斷

例2 在下列命題中,判斷p是q的什么條件.(在“充分不必要條件”、“必要不充分條件”、“充要條件”、“既不充分又不必要條件”中選出一種)

(1) p:|p|≥2,p∈R;q:方程x2+px+p+3=0有實根.

(2) p:圓x2+y2=r2與直線ax+by+c=0相切;q:c2=(a2+b2)r2,其中a2+b2≠0,r≠0.

(3) 設集合M={x|x>2},N={x|x<3},p:x∈M∩N;q:x∈M∪N.

解析 (1) 當|p|≥2時,例如p=3,此時方程x2+px+p+3=0無實根,因此“若p則q”為假命題;當方程x2+px+p+3=0有實根時,根據判別式有p≤-2或p≥6,此時|p|≥2成立,因此“若q則p”為真命題.故p是q的必要不充分條件.

上一篇:初中數學輔導完全攻略,太實用了

下一篇:這才是高中三年學習規劃的正確打開方式!

?
深圳市思學佳教育有限公司????粵ICP備17143213號-1????Copyright 2016,ALL Rights Reserved sixuejia.com

色情地址